
BCNF
and 

Transaction

Main reference:

A First Course in Database Systems (and associated material)  by 

J. Ullman and J. Widom, Prentice-Hall
1

Université Grenoble Alpes
20/04/2023

Bahareh Afshinpour

bahareh.afshinpour@univ-grenoble-alpes.fr 



Example

• Is R in the 3NF?

R(A,B,C,D,E,F)     FD={AB->CDEF, BD->F}

ABCDEF+ ={A,B,C,D,E,F}

AB+ ={A,B,C,D,E,F} AB is a super key.  Check out candidate key : A+ ={A}    B+ ={B}    

AB is a candidate key  so prime={A,B}

To check out if more candidate key exist : see right side and find prime attribute

No more candidate key : so  candidate key={AB} , Prime={A,B}  Non-Prime={C,D,E,F}

Non prime attribute → Non prime attribute

FD={AB->CDEF, BD->F}      AB->CDEF   prime->non-prime
BD->F  B is prime, D is non-prime.BD is Non-prime Non-prime-> Non-prime

R is not in 3NF



BCNF(Boyce-Codd Normal Form)

• It is strong version of 3NF.

The relation is in BCNF:
- It is in 3NF
- For each non-trivial functional dependency 

The left hand side of dependency must be a Supekey ( X->Y ) 



• R(A,B,C)    FD={A->B, B->C, C->A}

First find out the candidate key:
ABC + ={A,B,C}  we have all the relation so it is a super key

We start to discard as many attribute that we can since a candidate key is a minimal super key.

ABC + ={A,B,C} A + ={A,B,C} A has no proper subset. If no proper subset is possible, 
then there is no chance to have superkey CK=  yes,   Prime attribute={A}

More candidate key ??? Check the right side of the FD. 
If you can find the prime attribute we have more candidate key

C->A    so here we have more candidate key 

Example



C->A    so here we have more candidate key 

Example R(A,B,C)    FD={A->B, B->C, C->A}

CK=A   , replace A with C.  Is C candidate key?? We have to check.
C + ={C,A,B}  and C has no proper subset. CK=yes 
Prime attributes={A,C}
see right side.  We have B->C  . So we replace C by B.  …….
Prime attributes={A,C,B}

See the left side:
A->B  
B->C
C->A
All the left side are candidate key. Definitely they are super key.  So 

This relation is in the BCNF



Find the highest normal form in R

• R(A,B,C,D,E)    FD={A->BCDE, BC->ACE, D->E}



Transaction



• Transaction is a group or set of tasks into a single execution unit. 

• Each transaction begins with a specific task and ends when all the tasks 
in the group successfully complete.  

• If any of tasks fails the transactions fails.

• The effects of all the SQL statements in a transaction can be either 
all committed (applied to the database) or

all rolled back (undone from the database).

Transaction

•Decrement the savings account

•Increment the checking account

•Record the transaction in the transaction journal



Transaction

Unit of works In this unit of work, there could be multiple changes on 
multiple different rows in different tables 
that occur all that once.  

1

2
For example Insert Into Table1

Update Table 2

Tx 

An important trait (property) of a transaction is the fact that these 
two things must either  succeed or fail together as a unit

Therefore, a transactions has only two results : - success   -Failure

A transaction is a 
logical, atomic unit of 

work that contains one 
or more SQL
statements.





• When using the generic SQL interface, each statement is a transaction 
by itself.

• Also, SQL allows the programmer to group several statement into a 
single transaction. 

• The SQL command START TRANSACTION  is used to mark the 
beginning of the transaction.

• There are two ways to end a transaction:
▪ Using COMMIT

▪ Using ROLLBACK



Example

We have two different users. 

User1(system) want to add one new tuple in the department 



If we proceed in the sys terminal, and check the department 

We can not see any changes in the table

The changes must be saved otherwise it is discarded

When any user is updating any changes, only the user itself can see the changes without commit or rollback. No 
other user can access or view the updates, as it is not permanently saved by the user who performed them. 

Example



Example



ROLLBACK



• Without Commit or Rollback, the permanent update is not possible.

• But if the user changes or updates sth and disconnects from the 
database properly, commits occur. 

If user disconnects from the database after some changes auto commits occurs.  



•START TRANSACTION or BEGIN start a new transaction.
•COMMIT commits the current transaction, making its changes permanent.
•ROLLBACK rolls back the current transaction, canceling its changes.
•SET autocommit disables or enables the default autocommit mode for the current session.

SET TRANSACTION marks the beginning of a transaction. 
Any changes you make to your data following the 

beginning of a transaction are not made permanent 
until you issue a COMMIT.

Tip
Using SET TRANSACTION to begin a transaction is optional. A new transaction begins implicitly with the first DML statement that you 

execute after you make a database connection or with the first DML statement that you execute following a COMMIT or a ROLLBACK (or 
any DDL statement such as TRUNCATE). You need to use SET TRANSACTION only when you want transaction attributes such as READ ONLY

that are not the default.

Transaction



read/write transaction : Such a transaction is the default, and it allows you to issue 
statements such as UPDATE and DELETE. 
You can also create read-only transactions:



19

ACID Transactions

• A DBMS is expected to support “ACID transactions,” processes that 
are:
• Atomic : All actions of a transaction are atomic and either they are all 

performed or none of the actions are performed. 

• Consistent : Each transaction, when run alone, must preserve the 
consistency of the database. 

• Isolated : Each transaction is isolated (protected) from the effects of other 
concurrently running transactions. 

• Durable : Effects of a process do not get lost if the system crashes. once a 
transaction commits, the data should persist in the database even if the 
system crashes before the data is written to non-volatile storage.



20

Isolation Levels

• SQL defines four isolation levels = choices about what interactions 
are allowed by transactions that execute at about the same time.

• How a DBMS implements these isolation levels is highly complex, and 
a typical DBMS provides its own options.



SQL



23

Updates

• To change certain attributes in certain tuples of a relation:

UPDATE <relation>

SET <list of attribute assignments>

WHERE <condition on tuples>;

Change drinker Fred’s phone number to 555-1212:
UPDATE Drinkers

SET phone = ’555-1212’

WHERE name = ’Fred’;



24

Example: Update Several Tuples

• Make $4 the maximum price for beer:

UPDATE Sells

SET price = 4.00

WHERE price > 4.00;



25

Adding Attributes

• We may add a new attribute (“column”) to a relation 
schema by:

ALTER TABLE <name> ADD

<attribute declaration>;

• Example:

ALTER TABLE Bars ADD  phone CHAR(16)



26

Deleting Attributes

• Remove an attribute from a relation schema by:

ALTER TABLE <name>

DROP <attribute>;

• Example: we don’t really need the license attribute 
for bars:

ALTER TABLE Bars DROP license;



27

Views

• A view is a “virtual table” = a relation defined in terms of the 
contents of other tables and views.
• V= viewquery (R1,R2,…,RN)

• Declare by:

CREATE VIEW <name> AS <query>;



28

Example: View Definition

• CanDrink(drinker, beer) is a view “containing” the drinker-beer 
pairs such that the drinker frequents at least one bar that 
serves the beer:

CREATE VIEW CanDrink AS

SELECT drinker, beer

FROM Frequents, Sells

WHERE Frequents.bar = Sells.bar;



29

Example: Accessing a View

• a limited ability to modify views if it makes sense as a modification 
of one underlying base table.

• Example query:

SELECT beer FROM CanDrink

WHERE drinker = ’Sally’;



30

Query + Subquery Solution

SELECT bar

FROM Sells

WHERE beer = ’Miller’ AND

price = (SELECT price

FROM Sells

WHERE bar = ’Joe’’s Bar’

AND beer = ’Bud’);

The price at
which Joe
sells Bud



31

The IN Operator

▪ <tuple> IN <relation> is true if and only if the tuple is a member of the 
relation.
▪ <tuple> NOT IN <relation> means the opposite.

▪ IN-expressions can appear in WHERE clauses.

▪ The <relation> is often a subquery.



32

Example

▪ From Beers(name, manf) and Likes(drinker, beer), find the name 
and manufacturer of each beer that Fred likes.

SELECT *

FROM Beers

WHERE name IN (SELECT beer

FROM Likes

WHERE drinker = ’Fred’);

The set of
beers Fred
likes



33

The Operator ANY

• x = ANY( <relation> ) is a boolean condition true if x equals at least 
one tuple in the relation.

• Similarly, = can be replaced by any of the comparison operators.

• Example: x >= ANY( <relation> ) means x is not the smallest tuple in 
the relation.
• Note tuples must have one component only.



34

The Operator ALL

• Similarly, x <> ALL( <relation> ) is true if and only if for every tuple t in 
the relation, x is not equal to t.
• That is, x is not a member of the relation.

• The <> can be replaced by any comparison operator.

• Example: x >= ALL( <relation> ) means there is no tuple larger than x
in the relation.



35

Example

• From Sells(bar, beer, price), find the beer(s) sold for the highest price.

SELECT beer

FROM Sells

WHERE price >= ALL(

SELECT price

FROM Sells);

price from the outer
Sells must not be
less than any price.


